3.343 \(\int \frac{x^{15/2}}{(b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=242 \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2} \]

[Out]

-Sqrt[x]/(4*c*(b + c*x^2)^2) + Sqrt[x]/(16*b*c*(b + c*x^2)) - (3*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]
)/(32*Sqrt[2]*b^(7/4)*c^(5/4)) + (3*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(32*Sqrt[2]*b^(7/4)*c^(5/4)
) - (3*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(7/4)*c^(5/4)) + (3*Log[Sqrt[
b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(7/4)*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.183075, antiderivative size = 242, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.526, Rules used = {1584, 288, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[x^(15/2)/(b*x^2 + c*x^4)^3,x]

[Out]

-Sqrt[x]/(4*c*(b + c*x^2)^2) + Sqrt[x]/(16*b*c*(b + c*x^2)) - (3*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]
)/(32*Sqrt[2]*b^(7/4)*c^(5/4)) + (3*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(32*Sqrt[2]*b^(7/4)*c^(5/4)
) - (3*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(7/4)*c^(5/4)) + (3*Log[Sqrt[
b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(7/4)*c^(5/4))

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{15/2}}{\left (b x^2+c x^4\right )^3} \, dx &=\int \frac{x^{3/2}}{\left (b+c x^2\right )^3} \, dx\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\int \frac{1}{\sqrt{x} \left (b+c x^2\right )^2} \, dx}{8 c}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}+\frac{3 \int \frac{1}{\sqrt{x} \left (b+c x^2\right )} \, dx}{32 b c}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{b+c x^4} \, dx,x,\sqrt{x}\right )}{16 b c}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{b}-\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{32 b^{3/2} c}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{b}+\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{32 b^{3/2} c}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{64 b^{3/2} c^{3/2}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{64 b^{3/2} c^{3/2}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}-\frac{3 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}\\ &=-\frac{\sqrt{x}}{4 c \left (b+c x^2\right )^2}+\frac{\sqrt{x}}{16 b c \left (b+c x^2\right )}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{7/4} c^{5/4}}-\frac{3 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}+\frac{3 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{7/4} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.116256, size = 223, normalized size = 0.92 \[ \frac{\frac{8 \sqrt [4]{c} \sqrt{x}}{b^2+b c x^2}-\frac{3 \sqrt{2} \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{b^{7/4}}+\frac{3 \sqrt{2} \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{b^{7/4}}-\frac{6 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{b^{7/4}}+\frac{6 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{b^{7/4}}-\frac{32 \sqrt [4]{c} \sqrt{x}}{\left (b+c x^2\right )^2}}{128 c^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(15/2)/(b*x^2 + c*x^4)^3,x]

[Out]

((-32*c^(1/4)*Sqrt[x])/(b + c*x^2)^2 + (8*c^(1/4)*Sqrt[x])/(b^2 + b*c*x^2) - (6*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^
(1/4)*Sqrt[x])/b^(1/4)])/b^(7/4) + (6*Sqrt[2]*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/b^(7/4) - (3*Sqrt
[2]*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/b^(7/4) + (3*Sqrt[2]*Log[Sqrt[b] + Sqrt[2]*b^(
1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/b^(7/4))/(128*c^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.06, size = 169, normalized size = 0.7 \begin{align*} 2\,{\frac{1}{ \left ( c{x}^{2}+b \right ) ^{2}} \left ( 1/32\,{\frac{{x}^{5/2}}{b}}-{\frac{3\,\sqrt{x}}{32\,c}} \right ) }+{\frac{3\,\sqrt{2}}{128\,{b}^{2}c}\sqrt [4]{{\frac{b}{c}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) \left ( x-\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) ^{-1}} \right ) }+{\frac{3\,\sqrt{2}}{64\,{b}^{2}c}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+1 \right ) }+{\frac{3\,\sqrt{2}}{64\,{b}^{2}c}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(15/2)/(c*x^4+b*x^2)^3,x)

[Out]

2*(1/32/b*x^(5/2)-3/32*x^(1/2)/c)/(c*x^2+b)^2+3/128/b^2/c*(b/c)^(1/4)*2^(1/2)*ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2
)+(b/c)^(1/2))/(x-(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+3/64/b^2/c*(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c
)^(1/4)*x^(1/2)+1)+3/64/b^2/c*(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+b*x^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38107, size = 608, normalized size = 2.51 \begin{align*} \frac{12 \,{\left (b c^{3} x^{4} + 2 \, b^{2} c^{2} x^{2} + b^{3} c\right )} \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{1}{4}} \arctan \left (\sqrt{b^{4} c^{2} \sqrt{-\frac{1}{b^{7} c^{5}}} + x} b^{5} c^{4} \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{3}{4}} - b^{5} c^{4} \sqrt{x} \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{3}{4}}\right ) + 3 \,{\left (b c^{3} x^{4} + 2 \, b^{2} c^{2} x^{2} + b^{3} c\right )} \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{1}{4}} \log \left (b^{2} c \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - 3 \,{\left (b c^{3} x^{4} + 2 \, b^{2} c^{2} x^{2} + b^{3} c\right )} \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{1}{4}} \log \left (-b^{2} c \left (-\frac{1}{b^{7} c^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) + 4 \,{\left (c x^{2} - 3 \, b\right )} \sqrt{x}}{64 \,{\left (b c^{3} x^{4} + 2 \, b^{2} c^{2} x^{2} + b^{3} c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+b*x^2)^3,x, algorithm="fricas")

[Out]

1/64*(12*(b*c^3*x^4 + 2*b^2*c^2*x^2 + b^3*c)*(-1/(b^7*c^5))^(1/4)*arctan(sqrt(b^4*c^2*sqrt(-1/(b^7*c^5)) + x)*
b^5*c^4*(-1/(b^7*c^5))^(3/4) - b^5*c^4*sqrt(x)*(-1/(b^7*c^5))^(3/4)) + 3*(b*c^3*x^4 + 2*b^2*c^2*x^2 + b^3*c)*(
-1/(b^7*c^5))^(1/4)*log(b^2*c*(-1/(b^7*c^5))^(1/4) + sqrt(x)) - 3*(b*c^3*x^4 + 2*b^2*c^2*x^2 + b^3*c)*(-1/(b^7
*c^5))^(1/4)*log(-b^2*c*(-1/(b^7*c^5))^(1/4) + sqrt(x)) + 4*(c*x^2 - 3*b)*sqrt(x))/(b*c^3*x^4 + 2*b^2*c^2*x^2
+ b^3*c)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(15/2)/(c*x**4+b*x**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.13433, size = 285, normalized size = 1.18 \begin{align*} \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{64 \, b^{2} c^{2}} + \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{64 \, b^{2} c^{2}} + \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{128 \, b^{2} c^{2}} - \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{128 \, b^{2} c^{2}} + \frac{c x^{\frac{5}{2}} - 3 \, b \sqrt{x}}{16 \,{\left (c x^{2} + b\right )}^{2} b c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(15/2)/(c*x^4+b*x^2)^3,x, algorithm="giac")

[Out]

3/64*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^2*c^2) + 3/64*
sqrt(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b^2*c^2) + 3/128*sqr
t(2)*(b*c^3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c^2) - 3/128*sqrt(2)*(b*c^3)^(1/4)*lo
g(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c^2) + 1/16*(c*x^(5/2) - 3*b*sqrt(x))/((c*x^2 + b)^2*b*c)